报告时间:2018年7月18日(周三)下午16:00-17:00
报告地点:实验综合楼418
专家简介:曹喜望,南京航空航天大学理学院教授,博士生导师。师从樊恽教授获得硕士学位,师从北京大学丘维声教授获得博士学位。研究方向是代数组合、有限域及其应用,在差集、指数和、有限域上的多项式及代数编码方面做出了出色的工作,其研究成果发表在相关领域的权威期刊IEEE Transaction on Information Theory、Finite Fields and their Applications、Design Codes and Cryptography、Science China(Mathematics)等,发表学术论文80余篇,出版专著一部。曹喜望教授先后访问过Sydney大学、香港科技大学、台湾中央研究院、北京国际数学中心、南开大学陈省身数学研究所等。入选江苏拾青蓝工程”学术带头人,现为国家自然科学基金项目函审人、美国数学会会员、美国数学评论评论员、International Mathematical Union会员、10多家国际SCI/EI期刊审稿人。主持国家自然科学基金面上项目和省部级科研项目多项。
报告摘要:Perfect state transfer (PST) has great significance due to its applications in quantum information processing and quantum computation. In this talk, we present a characterization of the connected simple Cayley graph $\Gamma={\rm Cay}(G,S)$ having PST. We show that many previous results on periodicity and existence of PST of circulant graphs (where the underlying group $G$ is cyclic) and cubelike graphs ($G=(\mathbb{F}_2^n,+)$) can be derived or generalized to arbitrary abelian case in unified and more simple ways from our characterization. We also get several new results including answers to some questions raised before.
欢迎各位老师、同学届时参加!